Learning Robot Motion Control from Demonstration and Human Advice

نویسندگان

  • Brenna Argall
  • Brett Browning
  • Manuela M. Veloso
چکیده

As robots become more commonplace within society, the need for tools that enable non-robotics-experts to develop control algorithms, or policies, will increase. Learning from Demonstration (LfD) offers one promising approach, where the robot learns a policy from teacher task executions. In this work we present an algorithm that incorporates human teacher feedback to enable policy improvement from learner experience within an LfD framework. We present two implementations of this algorithm, that differ in the sort of teacher feedback they provide. In the first implementation, called Binary Critiquing (BC), the teacher provides a binary indication that highlights poorly performing portions of the execution. In the second implementation, called Advice-Operator Policy Improvement (A-OPI), the teacher provides a correction on poorly performing portions of the student execution. Most notably, these corrections are continuous-valued and appropriate for low level motion control action spaces. The algorithms are applied to simulated and real robot validation domains. For both, policy performance is found to improve with teacher feedback. Specifically, with BC learner execution success and efficiency come to exceed teacher performance. With A-OPI task success and accuracy are shown to be similar or superior to the typical LfD approach of correcting behavior through more teacher demonstrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile Robot Motion Control from Demonstration and Corrective Feedback

Robust motion control algorithms are fundamental to the successful, autonomous operation of mobile robots. Motion control is known to be a difficult problem, and is often dictated by a policy, or state-action mapping. In this chapter, we present an approach for the refinement of mobile robot motion control policies, that incorporates corrective feedback from a human teacher. The target applicat...

متن کامل

Learning Robot Behaviour and Skills Based on Human Demonstration and Advice: The Machine Learning Paradigm

Service robots require easy programming methods allowing the unexperienced human user to easily integrate motion and perception skills or complex problem solving strategies. To achieve this goal, robots should learn from operators how and what to do considering hardand software constraints. Various approaches modelling the man-machine skill transfer have been proposed. Systems following the Pro...

متن کامل

Workspace Boundary Avoidance in Robot Teaching by Demonstration Using Fuzzy Impedance Control

The present paper investigates an intuitive way of robot path planning, called robot teaching by demonstration. In this method, an operator holds the robot end-effector and moves it through a number of positions and orientations in order to teach it a desired task. The presented control architecture applies impedance control in such a way that the end-effector follows the operator’s hand with d...

متن کامل

Learning Mobile Robot Motion Control from Demonstrated Primitives and Human Feedback

Task demonstration is one effective technique for developing robot motion control policies. As tasks become more complex, however, demonstration can become more difficult. In this work we introduce a technique that uses corrective human feedback to build a policy able to perform an undemonstrated task from simpler policies learned from demonstration. Our algorithm first evaluates and corrects t...

متن کامل

Teacher feedback to scaffold and refine demonstrated motion primitives on a mobile robot

Task demonstration is an effective technique for developing robot motion control policies. As tasks becomemore complex, however, demonstration can becomemore difficult. In this work, we introduce an algorithm that uses corrective human feedback to build a policy able to performanovel task, by combining simpler policies learned from demonstration. While some demonstration-based learning approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009